Higgs Bundles and Surface Group Representations in the Real Symplectic Group

نویسنده

  • O. GARCÍA-PRADA
چکیده

In this paper we study the moduli space of representations of a surface group (i.e., the fundamental group of a closed oriented surface) in the real symplectic group Sp(2n,R). The moduli space is partitioned by an integer invariant, called the Toledo invariant. This invariant is bounded by a Milnor–Wood type inequality. Our main result is a count of the number of connected components of the moduli space of maximal representations, i.e. representations with maximal Toledo invariant. Our approach uses the non-abelian Hodge theory correspondence proved in a companion paper [19] to identify the space of representations with the moduli space of polystable Sp(2n,R)-Higgs bundles. A key step is provided by the discovery of new discrete invariants of maximal representations. These new invariants arise from an identification, in the maximal case, of the moduli space of Sp(2n,R)-Higgs bundles with a moduli space of twisted Higgs bundles for the group GL(n,R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Higgs Bundles and Teichmüller Spaces for Punctured Surfaces

In this paper we study the relation between parabolic Higgs bundles and irreducible representations of the fundamental group of punctured Riemann surfaces established by Simpson. We generalize a result of Hitchin, identifying those parabolic Higgs bundles that correspond to Fuchsian representations. We also study the Higgs bundles that give representations whose image is contained, after conjug...

متن کامل

Maximal Surface Group Representations in Isometry Groups of Classical Hermitian Symmetric Spaces

Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected compon...

متن کامل

Rank One Higgs Bundles and Representations of Fundamental Groups of Riemann Surfaces

This expository paper details the theory of rank one Higgs bundles over a closed Riemann surface X and their relationship to representations of the fundamental group of X . We construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From ea...

متن کامل

Toledo Invariants of Higgs Bundles on Elliptic Surfaces Associated to Base Orbifolds of Seifert Fibered Homology 3-spheres

To each connected component in the space of semisimple representations from the orbifold fundamental group of the base orbifold of a Seifert fibered homology 3-sphere into the Lie group U(2, 1), we associate a real number called the “orbifold Toledo invariant.” For each such orbifold, there exists an elliptic surface over it, called a Dolgachev surface. Using the theory of Higgs bundles on thes...

متن کامل

Higgs Bundles and Geometric Structures on Surfaces

Introduction 1 1. Representations of the fundamental group 3 2. Abelian groups and rank one Higgs bundles 5 3. Stable vector bundles and Higgs bundles 6 4. Hyperbolic geometry: G = PSL(2,R) 8 5. Moduli of hyperbolic structures and representations 13 6. Rank two Higgs bundles 19 7. Split R-forms and Hitchin’s Teichmüller component 21 8. Hermitian symmetric spaces: Maximal representations 24 Refe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009